Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Med Oncol ; 41(5): 90, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522058

RESUMO

Pancreatic cancer is a highly aggressive and often lethal malignancy with limited treatment options. Its late-stage diagnosis and resistance to conventional therapies make it a significant challenge in oncology. Immunotherapy, particularly cancer vaccines, has emerged as a promising avenue for treating pancreatic cancer. Multi-epitope vaccines, designed to target multiple epitopes derived from various antigens associated with pancreatic cancer, have gained attention as potential candidates for improving therapeutic outcomes. In this study, we have explored transcriptomics and protein expression databases to identify potential upregulated proteins in pancreatic cancer cells. After examining a total of 21,054 proteins from various databases, it was discovered that 143 proteins expressed differently in malignant and healthy cells. The CTL, HTL and BCE epitopes were predicted for the shortlisted proteins. 51,840 vaccine constructs were created by concatenating CTL, HTL, and B-cell epitopes in the respective sequences. The best 86 structures were selected from a set of 51,840 designs after they were analyzed for vaxijenicity, allergenicity, toxicity, and antigenicity scores. In further simulation of the immune response using constructs, it was found that 41417, 37961, and 40841 constructs could produce a strong immune response when injected. Further, it was found that construct 37961 showed stronger interaction and stability with TLR-9 as determined from the large-scale molecular dynamics simulations. Moreover, the 37961 construct has shown interactions with TLR-9 suggests its potential in inducing immune response. In addition, construct 37961 has shown 100% predicted solubility in the E. coli expression system. Overall, the study indicates the designed construct 37961 has the potential to induce an anti-tumor immune response and long-standing protection pending further studies.


Assuntos
Vacinas Anticâncer , Neoplasias Pancreáticas , Humanos , Epitopos/genética , Proteoma , Escherichia coli , Receptor Toll-Like 9 , Neoplasias Pancreáticas/genética
3.
J Biomol Struct Dyn ; 42(2): 863-875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37096664

RESUMO

Leishmaniasis is caused by Leishmania genus parasites and has a high mortality rate. The available drugs to treat leishmaniasis fail due to acquired resistance in parasites. Several enzymes of the Leishmania parasite have been used to design new therapeutic molecules against leishmaniasis. This study uses a pharmacophore-guided approach to design the drug candidate by targeting Leishmania N-Myristoyl transferase (LdNMT). From the initial sequence analysis of LdNMT, we have identified a unique 20 amino acid stretch exploited for screening and designing the small molecules. The pharmacophore for the myristate binding site on LdNMT was elucidated, and a heatmap was constructed. The leishmanial NMT pharmacophore has similarities with other pathogenic microorganisms. Moreover, substituting alanine in pharmacophoric residues elevates the affinity of myristate with NMT. Furthermore, a molecular dynamics (MD) simulation study was conducted to ascertain the stability of the mutants and or wild type. The wild-type NMT has a comparatively low affinity to myristate compared to alanine mutants, indicating that hydrophobic residues favor the myristate binding. The molecules were initially designed by using pharmacophore as a sieving mechanism. In subsequent steps, the selected molecules screened against leishmanial unique amino acid stretch and subsequently with human, leishmanial full-size NMTs. The compounds BP5, TYI, DMU, 3PE and 4UL were the top hits and chemical features similar to the myristate. The molecule 4UL was found to be highly specific towards leishmanial NMT over human NMT, suggesting the molecule is a strong leishmanial NMT inhibitor. The molecule can be taken further to assess it in in-vitro conditions.


Assuntos
Leishmania , Leishmaniose , Humanos , Transferases , Farmacóforo , Miristatos , Leishmaniose/tratamento farmacológico , Desenho de Fármacos , Alanina , Aminoácidos
4.
Biochim Biophys Acta Gen Subj ; 1867(10): 130416, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37463617

RESUMO

One of the global problems of rising concern is the spread of the neglected tropical disease, leishmaniasis. There are several drugs used for the treatment of the disease but the repertoire of drugs has drawbacks like toxicity and low therapeutic value. Considering the need for new drugs, we studied the synthesis of 4',7-dihydroxyflavone conjugated multi-walled carbon nanotubes (47DHF-MWCNTs) and evaluated their anti-leishmanial activity against Leishmania donovani. The compound 47DHF was conjugated to the acid oxidized MWCTNs by Steglich esterification. The synthesized 47DHF-MWCNTs were characterized by UV spectroscopy, and, from the zeta value of 35 mV, they were found to be stable. 47DHF-MWCNTs possessed 84% drug loading efficiency and 63% cumulative drug release at intra-macrophage pH of 5.8. Moreover, the evaluation of 47DHF-MWCNTs for activity showed an IC50 value of 0.051 ± 0.01 µg/ml and 0.072 ± 0.01 µg/ml against the promastigote and amastigote form, respectively. 47DHF-MWCNTs exhibited an infectivity index of 42 and selectivity index of 95, suggesting the activity of 47DHF-MWCNTs against intracellular amastigotes in the study. The 47DHF-MWCNTs also had low cytotoxicity towards macrophage cells. Fascinatingly, the 47DHF-MWCNTs treatment causes a high accumulation of ROS in the promastigotes suggesting the mechanism of anti-leishmanial activity to be ROS mediated. Summarizing from our results, we propose for the first time a novel 47DHF conjugated MWCNTs capable of anti-leishmanial activity with lower cytotoxicity that has a huge potential to be a formulation against leishmaniasis.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose , Nanotubos de Carbono , Parasitos , Animais , Espécies Reativas de Oxigênio , Antiprotozoários/farmacologia , Antiprotozoários/química , Leishmaniose/tratamento farmacológico
5.
Comput Biol Med ; 160: 106978, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172355

RESUMO

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a vital protein involved in Toll-like and interleukin-1 receptor signal transduction. Several studies have reported regarding the crystal structure, dynamic properties, and interactions with inhibitors of the phosphorylated form of IRAK4. However, no dynamic properties of inhibitor-bound unphosphorylated IRAK4 have been previously studied. Herein, we report the intrinsic dynamics of unphosphorylated IRAK4 (uIRAK4) bound to type I and type II inhibitors. The corresponding apo and inhibitor-bound forms of uIRAK4 were subjected to three independent simulations of 500 ns (total 1.5 µs) each, and their trajectories were analyzed. The results indicated that all three systems were relatively stable, except for the type II inhibitor-bound form of uIRAK4, which exhibited less compact folding and higher solvent surface area. The intra-hydrogen bonds corroborated the structural deformation of the type-II inhibitor-bound complex, which could be attributed to the long molecular structure of the type-II inhibitor. Moreover, the type II inhibitor bound to uIRAK4 showed higher binding free energy with uIRAK4 than the type I inhibitor. The free energy landscape analysis showed a reorientation of Phe330 side chain from the DFG motif at different metastable states for all the systems. The intra-residual distance between residues Lys213, Glu233, Tyr262, and Phe330 suggests a functional interplay when the inhibitors are bound to uIRAK4, thereby hinting at their crucial role in the inhibition mechanism. Ultimately, the intrinsic dynamics study observed between type I/II inhibitor-bound forms of uIRAK4 may assist in better understanding the enzyme and designing therapeutic compounds.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Transdução de Sinais , Quinases Associadas a Receptores de Interleucina-1/química , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Inibidores de Proteínas Quinases/farmacologia
6.
PLoS One ; 18(4): e0283364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023008

RESUMO

Estrogen-related receptor gamma (ERRγ), the latest member of the ERR family, does not have any known reported natural ligands. Although the crystal structures of the apo, agonist-bound, and inverse agonist-bound ligand-binding domain (LBD) of ERRγ have been solved previously, their dynamic behavior has not been studied. Hence, to explore the intrinsic dynamics of the apo and ligand-bound forms of ERRγ, we applied long-range molecular dynamics (MD) simulations to the crystal structures of the apo and ligand-bound forms of the LBD of ERRγ. Using the MD trajectories, we performed hydrogen bond and binding free energy analysis, which suggested that the agonist displayed more hydrogen bonds with ERRγ than the inverse agonist 4-OHT. However, the binding energy of 4-OHT was higher than that of the agonist GSK4716, indicating that hydrophobic interactions are crucial for the binding of the inverse agonist. From principal component analysis, we observed that the AF-2 helix conformation at the C-terminal domain was similar to the initial structures during simulations, indicating that the AF-2 helix conformation is crucial with respect to the agonist or inverse agonist for further functional activity of ERRγ. In addition, we performed residue network analysis to understand intramolecular signal transduction within the protein. The betweenness centrality suggested that few of the amino acids are important for residue signal transduction in apo and ligand-bound forms. The results from this study may assist in designing better therapeutic compounds against ERRγ associated diseases.


Assuntos
Agonismo Inverso de Drogas , Simulação de Dinâmica Molecular , Ligantes , Furilfuramida , Receptores de Estrogênio/metabolismo
7.
FEBS J ; 290(14): 3646-3663, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36871140

RESUMO

The treatment for leishmaniasis is currently plagued by side effects such as toxicity and the emergence of drug resistance to the available repertoire of drugs, as well as the expense of these drugs. Considering such rising concerns, we report the anti-leishmanial activity and mechanism of a flavone compound 4',7-dihydroxyflavone (TI 4). Four flavanoids were initially screened for anti-leishmanial activity and cytotoxicity. The results showed that the compound TI 4 exhibited higher activity and selectivity index at the same time as maintaining low cytotoxicity. Preliminary microscopic studies and fluorescence-activated cell sorting analysis reported that the parasite underwent apoptosis on TI 4 treatment. Further in-depth studies revealed high reactive oxygen species (ROS) production and thiol levels in the parasites, suggesting ROS-mediated apoptosis in the parasites upon TI 4 treatment. Other apoptotic indicators such as intracellular Ca2+ and mitochondrial membrane potential also indicated the onset of apoptosis in the treated parasites. The mRNA expression levels signified that the redox metabolism genes were upregulated by two-fold along with the apoptotic genes. In summary, the use of TI 4 on Leishmania parasites induces ROS-mediated apoptosis; therefore, the compound has immense potential to be an anti-leishmanial drug. However, in vivo studies would be required to ascertain its safety and efficacy before we can exploit the compound against the growing leishmaniasis crisis.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Parasitos , Animais , Leishmania/metabolismo , Parasitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Leishmaniose/tratamento farmacológico , Apoptose , Antiprotozoários/farmacologia
8.
J Biomol Struct Dyn ; 41(6): 2602-2617, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34994297

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic that has devastated the lives of millions. Researchers around the world are relentlessly working in hopes of finding a cure. Even though the virus shares similarities with reported SARS-CoV and MERS-CoV at the genomic and proteomic level, efforts to repurpose already known drugs against SARS-CoV-2 have resulted ineffective. In this succinct review, we discuss the different potential targets in SARS-CoV-2 at both the genomic and proteomic levels. In addition, we analyze the compounds inhibiting individual target protein as well as multiple targets of SARS-CoV-2. ACE-2 receptor in humans has also been considered a target, keeping the role of the receptor in mind. The mechanism of action of these compounds has also been highlighted along with their clinical manifestation. Towards the end of the review, a brief note on the drugs currently in clinical trials and the current status of the vaccines are also examined. In conclusion, compounds targeting multiple targets of the virus hold the key in putting an end to the coronavirus malady.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Proteômica , Antivirais/uso terapêutico , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo
9.
Methods Mol Biol ; 2575: 3-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36301468

RESUMO

Several studies have been reported linking the role of polyglutamine (polyQ) disease-associated proteins with altered gene regulation induced by an unstable trinucleotide (CAG) repeat. Owing to their dynamic nature of expansion, these DNA repeats form secondary structures interfering with the normal cellular mechanisms like replication and transcription and, thereby, have become the underlying cause of numerous neurodegenerative disorders involving mental retardation and/or muscular or neuronal degeneration. Despite the widespread expression of the disease-causing protein, specific subsets of neurons are susceptible to specific patterns of inheritance and clinical symptoms. Although this cell-type selectivity is still elusive and less understood, it has been found that aberrant transcriptional regulation is one of the primary causes of polyQ diseases where the functions of histone-modifying complexes are disrupted. Besides, epigenetic modifications play a critical role in the pathogenesis of these diseases. In this chapter, we will be delving into how these polyQ repeats induce the self-assembly and aggregation of altered carrier proteins based on gene alterations, causing neuronal toxicity and cellular deaths. Besides, genomic instability in CAG repeats due to altered chromatin-related enzymes will be highlighted, along with epigenetic changes present in many polyQ disorders. Understanding the underlying molecular mechanisms in the root cause of these disorders will culminate in identifying therapeutic approaches for the treatment of these neurodegenerative disorders.


Assuntos
Glutamina , Doenças Neurodegenerativas , Humanos , Glutamina/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Estrutura Secundária de Proteína , Histonas/genética , Epigênese Genética , Expansão das Repetições de Trinucleotídeos , Repetições de Trinucleotídeos
10.
Methods Mol Biol ; 2575: 241-260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36301478

RESUMO

The CRISPR-Cas9 system is becoming an imperative tool to edit the genome of various organisms. The gene-editing study by the CRISPR-Cas9 system has revolutionized the diverse field of biomedical research, genome engineering, and gene therapy. CRISPR-Cas9 system has been modified to induce genome editing by small-guide RNAs, which function together with Cas9 nuclease for sequence-specific cleavage of target sequences. Here, we describe the simplified protocol of CRISPR-Cas9-mediated DNA editing in multicellular eukaryotes, including the construction of gRNA plasmids into vectors, screening of positive clones, transfections into 293FT cell line, and transduction into Jurkat cells. We also describe different bioinformatic tools to design suitable gRNAs with increased efficiency and decreased off-target events. Further, we describe the assessments of DNA editing by indel mutations and sequencing in transduced cells.


Assuntos
Sistemas CRISPR-Cas , Eucariotos , Humanos , Sistemas CRISPR-Cas/genética , Eucariotos/genética , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Edição de Genes/métodos , DNA/genética
11.
Methods Mol Biol ; 2575: 261-268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36301479

RESUMO

Genome alteration results in several diseases for which therapeutics are limited. Gene editing provides a strong and potential alternative for the treatment of rare and genetic diseases. CRISPR-Cas9-based system is now being envisaged as a potential tool for the cure of genetic diseases. The RNA-guided nuclease, SaCas9 enzyme, along with its HF versions is widely employed for in vivo gene editing because of its small size and high efficiency. The current work summarizes the widely used and improved methods for in vivo manipulation of genes. The potential of CRISPR-Cas9-based systems can be harnessed to treat genetic diseases and holds great promise for therapeutic interventions in gene therapy. The in vivo gene editing poses a caveat in the form of delivery systems, the tissue in question, and several other factors. This work describes the methods which have been optimized to offer high efficiency, delivery, and gene editing in vivo.


Assuntos
Sistemas CRISPR-Cas , Staphylococcus aureus , Sistemas CRISPR-Cas/genética , Staphylococcus aureus/metabolismo , Edição de Genes/métodos , Terapia Genética , Endonucleases/genética
12.
Methods Mol Biol ; 2575: 275-295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36301481

RESUMO

Tumors are usually associated with oxygen-deficient regions (hypoxia) which results from reduced and disorganized intratumoral vasculature, increased diffusion distances, and growing tumor masses. The proteomic and metabolomic landscape of the hypoxic cells is reprogrammed through hypoxia-induced transcription factor 1 which is activated in hypoxic conditions and is inactive when oxygen is abundant. This transcription factor has also been shown to inhibit or even reverse cell differentiation. Hypoxia impedes chemotherapy as it hampers the formation of cytotoxic free radicals due to the lesser availability of molecular oxygen. The metastatic and invasive attributes of cancer cells in hypoxic conditions are exacerbated, which results in poor therapeutic outcomes. Various cell-based assays for measuring hypoxia have been developed which give an estimate of the hypoxic state of cancer cells. Prior knowledge of these assays will improve the efficacy of the treatment regimens for cancers. This article provides exhaustive information on the hypoxia-based assays which are sensitive, robust, reliable, and give easy readout with choice of cell type for these assays may be dictated by the procedural or endpoint selection.


Assuntos
Neoplasias , Oxigênio , Humanos , Oxigênio/farmacologia , Oxigênio/metabolismo , Hipóxia Celular/fisiologia , Proteômica , Linhagem Celular , Neoplasias/terapia , Fatores de Transcrição/metabolismo , Hipóxia , Linhagem Celular Tumoral
13.
Parasitol Res ; 121(11): 3229-3241, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36056961

RESUMO

Tyrosine aminotransferase is a well-characterized enzyme in the Leishmania parasite, but the role of TAT in the parasite functioning remains largely unknown. In this study, we attempt to gain a better understanding of the enzyme's role in the parasite by gene knockout and overexpression of the TAT gene. The overexpression of TAT protein was well tolerated by the parasites in two independent repeats. Single knockout of TAT gene by homologous recombination, LdTAT+/- displayed distinct retardation in the proliferation rates and entered the death phase immediately. Morphology of LdTAT+/- parasites had important structural defects as they rounded up with elongated flagella. Gene regulation studies suggested the upregulation of key apoptotic and redox metabolism genes in LdTAT+/-. Moreover, LdTAT+/- cells accumulated higher ROS, thiols, intracellular Ca2+ concentrations, and mitochondrial membrane depolarization signifying the onset of apoptosis. Tocopherol levels were reduced by 50% in LdTAT+/- suggesting the involvement of TAT in tocopherol biosynthesis in the parasite. Overall, our results provide the first evidence that gene knockout of TAT results in apoptosis and that TAT is required for the survival and viability of Leishmania donovani.


Assuntos
Leishmania donovani , Parasitos , Animais , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , Homeostase , Recombinação Homóloga , Oxirredução , Parasitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Tocoferóis/metabolismo , Tirosina Transaminase/química , Tirosina Transaminase/genética , Tirosina Transaminase/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-35570555

RESUMO

Since the authors are not responding to the editor's requests to fulfill the editorial requirement, therefore, the article has been withdrawn.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php. BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

15.
Acta Trop ; 231: 106448, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35395228

RESUMO

Leishmaniasis is a neglected tropical disease that has been burdening the world for over a century. Though there are drugs to treat leishmaniasis, the repertoire suffers several drawbacks like toxicity and low therapeutic value. Therefore, there is a rising concern to develop new anti-leishmanial strategies. In this study, we report, for the first time, the one-pot synthesis method and functionalization of gold and silver nanoparticles with 4',7-dihydroxyflavone (Au-47DHF and Ag-47DHF)) and their anti-leishmanial activity. Oval and spherical-shaped Au-47DHF nanoparticles were obtained with an average size of 5.8 ± 0.1 nm and while synthesized dodecahedron-shaped Ag-47DHF had an average size of 25.1 ± 1 nm. The zeta potential of Au-47DHF and Ag-47DHF were measured to be stable with values of 40 mV and 60 mV, respectively. The functionalization of nanoparticles with 4',7-dihydroxyflavone was confirmed by FTIR spectra. Both Au-47DHF and Ag-47DHF exhibited promising anti-leishmanial activity against the promastigote forms with IC50 values of 0.1226 ± 0.02 µg/ml and 0.8483 ± 0.14 µg/ml, respectively. The nanoparticles were also capable of anti-intracellular amastigote activity with 0.121 ± 0.36 µg/ml and 0.215 ± 0.85 µg/ml for Au-47DHF and Ag-47DHF, respectively. Interestingly, the treatment with Au-47DHF and Ag-47DHF nanoparticles generated high ROS concentrations in the parasites suggesting a ROS-mediated anti-leishmanial activity of Au-47DHF and Ag-47DHF. Concluding from the results, we present here a novel synthesis method of Au-47DHF and Ag-47DHF nanoparticles that have immense potential to be anti-leishmanial agents.


Assuntos
Leishmania donovani , Nanopartículas Metálicas , Flavonoides , Ouro/farmacologia , Espécies Reativas de Oxigênio , Prata/farmacologia
16.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335141

RESUMO

Most neurodegenerative diseases such as Alzheimer's disease, type 2 diabetes, Parkinson's disease, etc. are caused by inclusions and plaques containing misfolded protein aggregates. These protein aggregates are essentially formed by the interactions of either the same (homologous) or different (heterologous) sequences. Several experimental pieces of evidence have revealed the presence of cross-seeding in amyloid proteins, which results in a multicomponent assembly; however, the molecular and structural details remain less explored. Here, we discuss the amyloid proteins and the cross-seeding phenomena in detail. Data suggest that targeting the common epitope of the interacting amyloid proteins may be a better therapeutic option than targeting only one species. We also examine the dual inhibitors that target the amyloid proteins participating in the cross-seeding events. The future scopes and major challenges in understanding the mechanism and developing therapeutics are also considered. Detailed knowledge of the amyloid cross-seeding will stimulate further research in the practical aspects and better designing anti-amyloid therapeutics.


Assuntos
Amiloidose , Diabetes Mellitus Tipo 2 , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas , Amiloidose/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos
17.
Int J Biol Macromol ; 205: 211-219, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35183598

RESUMO

Current treatments for leishmaniasis involve various drugs, including miltefosine and amphotericin B, which are associated with several side effects and high costs. Long-term use of these drugs may lead to the development of resistance, thereby reducing their efficiency. Chrysin (CHY) is a well-known, non-toxic flavonoid with antioxidant, antiviral, anti-inflammatory, anti-cancer, hepatoprotective, and neuroprotective properties. Recently we have shown that CHY targets the MAP kinase 3 enzyme of Leishmania and neutralizes the parasite rapidly. However, CHY is associated with low bioavailability, poor absorption, and rapid excretion issues, limiting its usage. In this study, we developed and tested a novel CHY-gold nanoformulation with improved efficacy against the parasites. The reducing power of CHY was utilized to reduce and conjugate with gold nanoparticles. Gold nanoparticles, which are already known for their anti-leishmanial properties, along with conjugated CHY, exhibited a decreased parasite burden in mammalian macrophages. Our findings showed that this biofunctionalized nanoformulation could be used as a potential therapeutic tool against leishmaniasis.


Assuntos
Antiprotozoários , Leishmania , Nanopartículas Metálicas , Parasitos , Animais , Antiprotozoários/farmacologia , Flavonoides/farmacologia , Ouro/farmacologia , Mamíferos
18.
Biochim Biophys Acta Mol Cell Res ; 1869(4): 119205, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34995711

RESUMO

The nuclear envelope (NE) is a bilayer membrane that separates and physically isolates the genetic material from the cytoplasm. Nuclear pore complexes (NPCs) are cylindrical structures embedded in the NE and remain the sole channel of communication between the nucleus and the cytoplasm. The interior of NPCs contains densely packed intrinsically disordered FG-nucleoporins (FG-Nups), consequently forming a permeability barrier. This barrier facilitates the selection and specificity of the cargoes that are imported, exported, or shuttled through the NPCs. Recent studies have revealed that FG-Nups undergo the process of liquid-liquid phase separation into liquid droplets. Moreover, these liquid droplets mimic the permeability barrier observed in the interior of NPCs. This review highlights the phase separation of FG-Nups occurring inside the NPCs rooted in the NE. We discuss the phase separation of FG-Nups and compare the different aspects contributing to their phase separation. Furthermore, several diseases caused by the aberrant phase separation of the proteins are examined with respect to NEs. By understanding the fundamental process of phase separation at the nuclear membrane, the review seeks to explore the parameters influencing this phenomenon as well as its importance, ultimately paving the way for better research on the structure-function relationship of biomolecular condensates.


Assuntos
Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Amiloide/química , Amiloide/metabolismo , Animais , Fenômenos Biofísicos , Humanos , Simulação de Dinâmica Molecular , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/química
19.
ACS Omega ; 6(47): 31396-31403, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34869966

RESUMO

Despite global therapeutic advancements, tropical parasitic infections like trypanosomiasis and leishmaniasis continue to be a major health concern in developing countries. These two tropical infectious diseases lead to enormous economic loss, significant disability, and morbidity, accounting for over one million deaths per year worldwide. The causative parasites, which shuttle between an insect vector and a mammalian host, thrive either in the bloodstream or in the intramacrophage environments. Essentially, the parasites live in an environment of oxidative stress and therefore require metabolic pathways to counterbalance the host immune response and survive the adverse conditions. Apart from the trypanothione pathway elucidated in the parasites, there exists a tocopherol pathway that functions to scavenge the reactive chemical species. This pathway, unique to photosynthetic organisms, is essential for the parasite's survival, though the enzymes involved remain largely uncharacterized. Consequently, an understanding of the origin of the pathway and where and how the interconnected tocopherol pathway functions may result in the identification of promising and potential therapeutic interventions to combat these deadly diseases. Recent works underline the presence of the tocopherol pathway in trypanosomatids and hypothesize that trypanosomatids may be tocopherol prototrophs. This review focuses on the biosynthesis of tocopherols in Trypanosoma and Leishmania in light of the current evidence.

20.
Biomolecules ; 11(8)2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34439917

RESUMO

Melanoma differentiation-associated protein 5 (MDA5) is a crucial RIG-I-like receptor RNA helicase enzyme encoded by IFIH1 in humans. Single nucleotide polymorphisms in the IFIH1 results in fatal genetic disorders such as Aicardi-Goutières syndrome and Singleton-Merten syndrome, and in increased risk of type I diabetes in humans. In this study, we chose four different amino acid substitutions of the MDA5 protein responsible for genetic disorders: MDA5L372F, MDA5A452T, MDA5R779H, and MDA5R822Q and analyzed their structural and functional relationships using molecular dynamic simulations. Our results suggest that the mutated complexes are relatively more stable than the wild-type MDA5. The radius of gyration, interaction energies, and intra-hydrogen bond analysis indicated the stability of mutated complexes over the wild type, especially MDA5L372F and MDA5R822Q. The dominant motions exhibited by the wild-type and mutant complexes varied significantly. Moreover, the betweenness centrality of the wild-type and mutant complexes showed shared residues for intra-signal propagation. The observed results indicate that the mutations lead to a gain of function, as reported in previous studies, due to increased interaction energies and stability between RNA and MDA5 in mutated complexes. These findings are expected to deepen our understanding of MDA5 variants and may assist in the development of relevant therapeutics against the disorders.


Assuntos
Doenças da Aorta/genética , Doenças Autoimunes do Sistema Nervoso/genética , Hipoplasia do Esmalte Dentário/genética , Helicase IFIH1 Induzida por Interferon/genética , Metacarpo/anormalidades , Doenças Musculares/genética , Mutação , Malformações do Sistema Nervoso/genética , Odontodisplasia/genética , Osteoporose/genética , Calcificação Vascular/genética , Biologia Computacional , Humanos , Ligação de Hidrogênio , Helicase IFIH1 Induzida por Interferon/fisiologia , Conformação Molecular , Simulação de Dinâmica Molecular , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Fenótipo , Análise de Componente Principal , RNA/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...